High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions.

نویسندگان

  • Young Jae Pyo
  • Markus Gierth
  • Julian I Schroeder
  • Myeon Haeng Cho
چکیده

Potassium (K(+)) is a major plant nutrient required for growth and development. It is generally accepted that plant roots absorb K(+) through uptake systems operating at low concentrations (high-affinity transport) and/or high external concentrations (low-affinity transport). To understand the molecular basis of high-affinity K(+) uptake in Arabidopsis (Arabidopsis thaliana), we analyzed loss-of-function mutants in AtHAK5 and AKT1, two transmembrane proteins active in roots. Compared with the wild type under NH(4)(+)-free growth conditions, athak5 mutant plants exhibited growth defects at 10 mum K(+), but at K(+) concentrations of 20 mum and above, athak5 mutants were visibly indistinguishable from the wild type. While germination, scored as radicle emergence, was only slightly decreased in athak5 akt1 double mutants on low-K(+) medium, double mutants failed to grow on medium containing up to 100 mum K(+) and growth was impaired at concentrations up to 450 mum K(+). Moreover, transfer of 3-d-old plants from high to low K(+) concentrations led to growth defects and leaf chlorosis at 10 mum K(+) in athak5 akt1 double mutant plants. Determination of Rb(+)(K(+)) uptake kinetics in wild-type and mutant roots using rubidium ((86)Rb(+)) as a tracer for K(+) revealed that high-affinity Rb(+)(K(+)) uptake into roots is almost completely abolished in double mutants and impaired in single mutants. These results strongly indicate that AtHAK5 and AKT1 are the two major, physiologically relevant molecular entities mediating high-affinity K(+) uptake into roots during seedling establishment and postgermination growth and that residual Rb(+)(K(+)) uptake measured in athak5 akt1 double mutant roots is insufficient to enable plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.

Caesium (Cs(+)) is a potentially toxic mineral element that is released into the environment and taken up by plants. Although Cs(+) is chemically similar to potassium (K(+)), and much is known about K(+) transport mechanisms, it is not clear through which K(+) transport mechanisms Cs(+) is taken up by plant roots. In this study, the role of AtHAK5 in high affinity K(+) and Cs(+) uptake was char...

متن کامل

The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

Potassium (K(+)) is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K(+) acquisition by plant roots at low external K(+) concentrations. Certain abiotic stress conditions such as salinity or Cs(+)-polluted soils may jeopardize plant K(+) nutriti...

متن کامل

Root K(+) acquisition in plants: the Arabidopsis thaliana model.

K(+) is an essential macronutrient required by plants to complete their life cycle. It fulfills important functions and it is widely used as a fertilizer to increase crop production. Thus, the identification of the systems involved in K(+) acquisition by plants has always been a research goal as it may eventually produce molecular tools to enhance crop productivity further. This review is focus...

متن کامل

Potassium Uptake Supporting Plant Growth in the Absence of AKT1 Channel Activity

A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between ...

متن کامل

Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress.

Physicochemical similarities between K(+) and Na(+) result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K(+) nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K(+) transport mutants akt1 (Arabidopsis K(+) transporter) and skor (shaker-like K(+) outw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 153 2  شماره 

صفحات  -

تاریخ انتشار 2010